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Abstract

We examine the spectral properties of the non-selfadjoint matrix Schrödinger equation on the
half-line

−y′′ + Q(x)y = k2y, x ∈ R+,

where n × n matrix potential is symmetric but not Hermitian for each x ∈ R+, each entry
of the matrix Q is a complex-valued, Lebesgue measurable function on R+ with a finite first
moment. We impose the most general boundary condition at the origin

Ay(0) + By′(0) = 0,

such that the constant n× n matrices A and B satisfy

ABT −BAT = 0, Rank[A|B] = n.

We obtain the resolvent operator, the point spectrum, continuous spectrum and the set of
spectral singularities of the resulting non-selfadjoint matrix Schrdinger operator.
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1 Introduction

Physical observables in quantum mechanics are represented by selfadjoint operators on a Hilbert
space. Therefore, one-dimensional Schrödinger equation

−y′′ + q(x)y = k2y, x ∈ R+ := (0,∞) , (1.1)

has been studied in detail when the potential q is a real-valued function and the most general
selfadjoint boundary condition at x = 0 is given

(cosγ)y(0) + (sinγ)y′(0) = 0, (1.2)

where γ ∈ (0, π] (see [22]). Equation (1.1) and the boundary condition (1.2) generate the selfadjoint
Schrödinger operator on the half-line. On the other hand, in some physical systems that proceed
without conservation of energy, non-selfadjoint Hamiltonians are present. For example; in problems
with friction, in the theory of open resonators, in problems of inelastic scattering, and many others
one has to deal with non-selfadjoint Hamiltonians. Certain self-adjoint problems, in which by
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separation of variables an operator-valued function appears that depends non-linearly on a spectral
parameter, also lead to a study of non-selfadjoint operators.

The non-selfadjoint one-dimensional Schrödinger operator is generated by Equation (1.1) with
a complex-valued potential q and with the most general boundary condition at x = 0

y′(0)− hy(0) = 0,

where h ∈ C. This non-selfadjoint operator may have complex eigenvalues and has spectral singu-
larities which are special points in the spectrum [27]. Explicitly, spectral singularities are the points
in the continuous spectrum which are the poles of the resolvent’s kernel and are not eigenvalues.
Recently, spectral singularities are identified for some concrete complex scattering potentials and
some physical interpretations are suggested [23].

Matrix Schrödinger equation on the half-line is given

−y′′ +Q(x)y = k2y, x ∈ R+, (1.3)

where the potential Q is an n×n matrix-valued function and k2 is a spectral parameter. Equation
(1.3) has many applications in quantum mechanics. For example, it can describe the scattering in
quantum mechanics involving particles of internal structures such as spins, scattering on quantum
graphs [7, 8, 9, 11, 17, 18, 19, 20, 21] and in quantum wires [14, 15]. More explicitly, the matrix
Schrödinger equation on the half-line corresponds to the system which consists of n very thin
quantum wires with open ends connected at a central vertex and thus it is equivalent in terms of
spectral analysis to a quantum star graph with n leads (edges of infinite length). This physical model
can be useful to design elementary gates in quantum computing and nanotubes for microscopic
electronic devices in which strings of atoms may form a star graph. In this model, the behavior
at each wire is described by Schrödinger operator on the edges and the boundary conditions at
the central vertex which are called vertex conditions impose certain restrictions. For problems
related to quantum graphs, consideration of general boundary condition at origin rather than the
Dirichlet boundary condition is more useful and relevant. Recently, the research on quantum graphs
has grown extensively since quantum graphs are used to model systems in mathematics, physics,
chemistry and engineering. Moreover, quantum graphs are also used for modeling quantum chaos
[16].

Equation (1.3) with a selfadjoint n × n matrix potential Q in L1
1 (R+) together with the most

general selfadjoint boundary condition at x = 0 is investigated [2, 3, 4, 5, 29]. A matrix-valued
function Q lies in the class L1

1 (R+) if each entry of the matrix Q is Lebesgue measurable on R+

and ∫ ∞
0

(1 + x)‖Q(x)‖dx <∞,

holds where ”‖, ‖” denotes any of the equivalent matrix norms. The most general selfadjoint
boundary condition at x = 0 has been formulated in several equivalent forms [2, 5, 12, 14, 15]. One
of these formulations may be given

A1y(0) +B1y
′(0) = 0, (1.4)

such that the constant n× n matrices A1 and B1 satisfy

A1B
∗
1 = B1A

∗
1, (1.5)
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Rank[A1|B1] = n, (1.6)

where ”∗” denotes the adjoint of a matrix [2]. The dependence of the Jost solution, Jost matrix,
regular solution and the scattering matrix to the parameters A1 and B1 used in the conditions (1.4)-
(1.6) is examined [4]. The small-energy [2] and high-energy [4] asymptotics of scattering solutions,
the Jost matrix, the inverse of the Jost matrix and the scattering matrix are derived for (1.3) with
a selfadjoint potential Q ∈ L1

1 (R+). Further, the continuity of the scattering matrix S(k) at k = 0
is proven [2] and the Levinson’s theorem is derived [4]. Spectral properties of the non-selfadjoint
matrix Schrödinger operator on the half-line have been also investigated [13, 25]. Equation (1.3)
with Q 6= Q∗ and the Dirichlet boundary condition at the origin is examined [25]. Eigenvalues and
spectral singularities are identified with the zeros of the determinant of the Jost matrix [25].

If the matrix potential Q in Equation (1.3) is not necessarily a finite dimensional operator we
obtain Schrödinger’s operator equation on the half-line, namely, Equation (1.3) with Q(x) is an
operator in a separable Hilbert space H (dimH ≤ ∞) for each x ∈ R+. Spectral properties of
Schrödinger’s operator equation where Q(x) is a selfadjoint, completely continuous operator in a
separable Hilbert space H (dimH ≤ ∞) for each x ∈ R+ have been studied [10]. Recently, spectral
properties of Schrödinger’s operator equation with non-selfadjoint, completely continuous operator
coefficient Q(x) on the half-line with Dirichlet boundary condition at origin [6] and on the real line
[24] have been investigated. These studies extended the results in finite dimensional case [13, 25] to
the infinite dimension by considering Q in Equation (1.3) as an operator in an infinite dimensional
Hilbert space. This transition to infinite dimensional case requires a new approach since in this
case eigenvalues and spectral singularities correspond to the singular points of an operator-valued
function (see [6, 24]).

In this paper, we consider Equation (1.3) where n× n matrix potential Q is in L1
1 (R+) and Q

is symmetric but not Hermitian i.e. Q∗(x) 6= Q(x) but QT (x) = Q(x) for each x ∈ R+ together
with the most general boundary condition at x = 0

Ay(0) +By′(0) = 0, (1.7)

such that the constant n× n matrices A and B satisfy

ABT −BAT = 0, (1.8)

Rank[A|B] = n, (1.9)

where ”AT ” denotes the transpose of A. Note that the condition (1.9) is required to ensure that
there are correct number of independent boundary conditions and the condition (1.8) is required
for the construction of the resolvent operator. Note also that the wavefunction y(k, x) in (1.3) can
be regarded both as a vector-valued function in Cn or as an n× n matrix-valued function. Let us
denote this non-selfadjoint matrix Schrödinger operator with the most general boundary condition
at the origin by L hereafter. This paper is aimed at extending the studies [2, 3, 4, 5, 28, 29] on
the selfadjoint matrix Schrödinger equation on the half-line with general boundary condition at
the origin to the non-selfadjoint case by considering the non-Hermitian but symmetric potential
Q. Furthermore, by considering the most general boundary condition at the origin, this study
complements the study [25] in which the non-selfadjoint matrix Schrödinger equation on the half-
line is considered with the Dirichlet boundary condition at x = 0. Note that the consideration of
the general boundary condition (1.7) completely changes the structure of the Jost matrix and hence
the problem itself.
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This paper is organized as follows. In Section 2 we present some preliminary results related to
the spectral properties of L. In Section 3 we introduce the Jost matrix and derive the resolvent of L.
Then, we obtain the continuous spectrum, the point spectrum and the set of spectral singularities
of L. Finally, in Section 4 we present some concluding remarks.

2 Preliminaries

In this section, we outline some results regarding certain n×n matrix solutions of (1.3) required for
our study. We give the results without proofs and refer the interested reader to [1]. Let us denote
the upper-half complex plane by C+, its closure by C+ = C+ ∪R and n×n unit matrix by In. Let
L2 (R+,Cn) denote the Hilbert space of complex-valued vector functions

f(x) = (f1(x), f2(x), . . . , fn(x)) (0 < x <∞) ,

such that each component of f lies in L2 (0,∞).
The domain of L consists of vector functions f from L2 (R+,Cn) such that

• f has an absolutely continuous derivative f ′ on every interval [0, a] , 0 < a <∞,

• Lf := −f ′′ +Qf ∈ L2 (R+,Cn),

• f satisfies the boundary condition (1.7).

The Jost solution f(x, k) is the n × n matrix solution of Equation (1.3) which satisfies the
asymptotic relations [1]

f(x, k) = eikx [In + o(1)] , fx(x, k) = ikeikx [In + o(1)] , x→∞,

for k ∈ C+ \ {0}. The Jost solution can be represented

f(x, k) = eikxIn +

∫ ∞
x

eiktK(x, t)dx, k ∈ C+ \ {0},

where

‖K(x, t)‖ ≤ c
∫ ∞
x+ t

2

‖Q(s)‖ds,

for some positive constant c [1].
Equation (1.3) has an n× n matrix solution g(x, k) satisfying the asymptotic relations [1]

g(x, k) = e−ikx [In + o(1)] , gx(x, k) = −ike−ikx [In + o(1)] , x→∞,

for k ∈ C+ \ {0}.
It is well known that f(x, k), fx(x, k), g(x, k), gx(x, k) are analytic in k ∈ C+ and continuous

in k ∈ C+ for each fixed x [1]. It is also known that every vector solution u(x, k) to (1.3) for
k ∈ C+ \ {0} can be expressed

u(x, k) = f(x, k)α+ g(x, k)β,

for some constant vectors α, β ∈ Cn [4].
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It is well known that we can find various n×n matrix solutions to (1.3) determined by specifying
some constant initial conditions at a finite x. These solutions are entire functions in k for each
fixed x [4]. In particular, it can be shown that Equation (1.3) has an n× n matrix solution ϕ(x, k)
called the regular solution satisfying the initial conditions

ϕ(0, k) = BT , ϕ′(0, k) = −AT . (2.1)

3 Spectral properties of L

In this section we introduce the Jost matrix related to (1.3) with symmetric but not Hermitian
matrix potential Q ∈ L1

1 (R+) together with the boundary condition (1.7). Then, we construct the
resolvent operator of L and then introduce the continuous spectrum, point spectrum and the set
of spectral singularities.

Let us denote the Wronskian
[F,G] := FG′ − F ′G

of two n × n matrix solutions F (x, k) and G(x, k) of (1.3). Let u(x, k) and v(x, k) be two n × n
matrix solutions of (1.3). It follows v(x, k)T is a solution of

−z′′ + zQ(x) = k2z, x ∈ R+. (3.1)

It easily follows by a direct computation that the Wronskian
[
v(x, k)T , u(x, k)

]
is independent of x

for each k. As a result, we can obtain various equalities by evaluating the Wronskian at different
values of x. For example evaluating the Wronskian at x = 0 and x→∞ yields[

f(x,±k)T , f(x,±k)
]

= ±2ikIn, k ∈ R, (3.2)[
f(x, k)T , f(x, k)

]
= 0, k ∈ C+. (3.3)

The Jost matrix J(k) of L is defined for k ∈ C+ as

J(k) :=
[
f(x, k)T , ϕ(x, k)

]
, (3.4)

where f(x, k) is the Jost solution and ϕ(x, k) is the regular solution defined by (2.1). Since the
Wronskian (3.4) is independent of x, evaluating at x = 0 and (2.1) yields

J(k) = −f(0, k)TAT − f ′(0, k)TBT . (3.5)

Note that since f(0, k) and f ′(0, k) are analytic in k ∈ C+ and continuous in k ∈ C+, J(k) is also
analytic in k ∈ C+ and continuous in k ∈ C+.

Theorem 3.1. The resolvent set ρ(L) of L is

ρ(L) =
{
k2 : k ∈ C+, det J(k) 6= 0

}
,

and the resolvent operator Rk(L) := (L− k2I)−1 is defined by

Rk(L)g(x) =

∫ ∞
0

R(x, t; k)g(t)dt,

where g ∈ L2 (R+,Cn) and

R(x, t; k) =

{
f(x, k)(J(k)T )−1ϕ(t, k)T , 0 ≤ t ≤ x,
ϕ(x, k)J(k)−1f(t, k)T , x < t <∞.
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Proof. We must find the general solution of the equation

−y′′ +Q(x)y − k2y = g(x), x ∈ (0,∞), (3.6)

where y, g ∈ L2 (R+,Cn) and the vector function y(x, k) satisfies the boundary condition (1.7).
Recall that a vector solution of the homogeneous part of (3.6) can be written

y(x, k) = f(x, k)α+ ϕ(x, k)β,

for some constant vectors α, β ∈ Cn and k ∈ C+ (see Section 2). Suppose that det J(k) 6= 0. We
use the variation of parameters method and try to find the general solution of (3.6) in the form

y(x, k) = f(x, k)a(x) + ϕ(x, k)b(x), (3.7)

where a(x) and b(x) are vector functions in Cn. Suppose that

f(x, k)a′(x) + ϕ(x, k)b′(x) = 0. (3.8)

Differentiating (3.7) with respect to x and plugging in (3.6) we have

f ′(x, k)a′(x) + ϕ′(x, k)b′(x) = −g(x). (3.9)

Multiplying (3.8) with ϕ′(x, k)T and (3.9) with ϕ(x, k)T from left and subtracting two equalities
we obtain [

ϕ(x, k)T , f(x, k)
]
a′(x) +

[
ϕ(x, k)T , ϕ(x, k)

]
b′(x) = −ϕ(x, k)T g(x). (3.10)

Since the Wronskian
[
ϕ(x, k)T , ϕ(x, k)

]
is independent of x evaluating at x = 0 and using (1.8) we

have [
ϕ(x, k)T , ϕ(x, k)

]
= 0.

Furthermore, the Wronskian
[
ϕ(x, k)T , f(x, k)

]
is independent of x and evaluating at x = 0 and

using (3.4) we get [
ϕ(x, k)T , f(x, k)

]
= −(J(k))T .

Since J(k) is invertible, J(k)T is also invertible and from (3.10) we have

a(x) =

∫ x

0

(J(k)T )−1ϕ(t, k)T g(t)dt+ α, (3.11)

for some constant vector α.
Multiplying (3.8) with f ′(x, k)T and (3.9) with f(x, k)T from left and subtracting two equalities

we obtain [
f(x, k)T , f(x, k)

]
a′(x) +

[
f(x, k)T , ϕ(x, k)

]
b′(x) = −f(x, k)T g(x).

From (3.3) and (3.4) it follows

b(x) = β +

∫ ∞
x

J(k)−1f(t, k)T g(t)dt, (3.12)

for some constant vector β.
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Plugging (3.11) and (3.12) in (3.7) we obtain

y(x, k) =f(x, k)α+

∫ x

0

f(x, k)(J(k)T )−1ϕ(t, k)T g(t)dt

+ ϕ(x, k)β +

∫ ∞
x

ϕ(x, k)J(k)−1f(t, k)T g(t)dt.

Since the vector function y(x, k) should lie in L2 (R+,Cn) it follows β = 0. We have

y′(x, k) = f ′(x, k)a(x) + ϕ′(x, k)b(x). (3.13)

Evaluating (3.13) at x = 0 and imposing the boundary condition (1.7) yield

J(k)Tα = 0.

Since J(k)T is invertible the last equality implies α = 0. Finally we find

y(x, k) =

∫ x

0

f(x, k)(J(k)T )−1ϕ(t, k)T g(t)dt

+

∫ ∞
x

ϕ(x, k)J(k)−1f(t, k)T g(t)dt.

q.e.d.

Corollary 3.2. Let us denote the continuous spectrum, the set of eigenvalues and the set of spectral
singularities of L by σc(L), σd(L) and σss(L) respectively. It follows

σc(L) = [0,∞) ,

σd(L) = {k2 : k ∈ C+, det(J(k)) = 0},
σss(L) = {k2 : k ∈ R \ {0}, det(J(k)) = 0}.

Proof. It easily follows from Theorem 3.1 that k2 is an eigenvalue of L iff det(J(k)) = 0 for k ∈ C+.
It can be shown similarly to the scalar case [26] that σc(L) = [0,∞). Spectral singularities are the
poles of the kernel of the resolvent and are also in the continuous spectrum. Therefore, it follows
from Theorem 3.1 that

σss(L) = {k2 : k ∈ R \ {0}, det(J(k)) = 0}

. q.e.d.

4 Conclusions

In this study we aim to complement the results [25] on the non-selfadjoint matrix Schrödinger
operator on the half-line with Dirichlet boundary condition at x = 0 by considering the most
general boundary condition at x = 0. We also aim to extend the studies [2, 3, 4, 5, 28, 29] on the
selfadjoint matrix Schrödinger equation on the half-line with general boundary condition at origin
to the non-selfadjoint case by considering the non-Hermitian but symmetric potential Q.
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The particular case B = 0 in (1.7) implies that A is invertible from (1.9) and thus yielding
the Dirichlet boundary condition at origin. Let us denote the matrix Schrödinger equation on the
half-line together with the Dirichlet boundary condition at the origin such that the n × n non-
selfadjoint matrix potential Q is in L1

1 (R+) by L0. It is well known that the set of eigenvalues of
L0 is bounded, countable and the limit points can only occur in a bounded subinterval of the real
line (see Theorem 1 in [25]). This result follows from the asymptotic relation

f(x, k) = eikx [In + o(1)] , |k| → ∞, k ∈ C+,

of the Jost solution. Note that considering the most general boundary condition at the origin
i.e. A 6= 0, B 6= 0 in (1.7), the Jost matrix depends on A and B and thus the boundedness of
eigenvalues of L depends on the matrices A and B. Moreover, it has been proven that the set of
spectral singularities of L0 is bounded and has zero Lebesgue measure (see Theorem 1 in [25]).
Similarly, if the most general boundary condition at the origin assumed, then the boundedness of
spectral singularities of L depends on the matrices A and B.
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